
 
 

 

  
Abstract— This paper describes the derivation and design of 

an array of self-organizing networks trained by inductive 
learning for one step ahead prediction of the outputs of the 
pre-precipitation stage of a wastewater treatment plant with a 
view to model predictive control of the stage. 

I. INTRODUCTION 
he influent of any wastewater treatment plant (WWTP) 
varies significantly over time both in its inflow rate as 
well as its chemical composition. A WWTP is essen-

tially a cascade of stages, as depicted in Fig. 1, wherein the 
wastewater undergoes successive processing with the object 
of satisfying specific quality standards in the process efflu-
ent that allow for its safe return to the environment and po-
tential re-use. In general on-line instrumentation at WWTPs 
is inadequate or limited and as a consequence controlling 
the quality of the process effluent is by no means an easy 
task. This field is attracting considerable interest of late be-
cause of its urgency. 
 One of the principal stages of a WWTP is pre-
precipitation in which the raw sewage is treated mechani-
cally and chemicals that remove phosphates and organic 
matter. This technique is widely used for removal of con-
taminants and the quality of the wastewater at this stage has 
a direct effect on the effectiveness and efficiency of the 
overall plant. A pressing need in most WWTPs is improved 
performance, minimization of the operational costs and en-
vironmental impact while stringent standards on the process 
effluents must be adhered to. Optimization of every stage of 
the WWTP demands systematic investigation of each stage 
and determination of control strategies [1] that will lead to 
minimization of multiple objective criteria. Any such inves-
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tigation demands determination of models of each stage of 
the process, a task that is by no means simple. Often, due to 
the complexity of the physical process microscopic models 
(i.e. mathematical models, typically state equations to ac-
count for the dynamic behavior of the process) cannot be 
established and recourse has to be taken to macroscopic 
models (i.e. black box input-output or holistic models). De-
ductive neural networks [2-4] have been extensively used in 
determining macroscopic models of physical processes.  
 Another class of neural networks or learning machines 
[5] that has proved effective for both modeling and predic-
tion uses self-organizing networks, which unlike deductive 
neural networks, are trained using inductive learning. This 
class of networks possesses not only the optimum weights 
but the optimal structure. Self-organizing networks are also 
referred to as Group Method of Data Handling or GMDH 
and were first described by Ivakhnenko [6-9] in the mid 
1960’s. These networks differ from traditional deductive 
neural networks in that they use clusters of polynomial net-
works stacked in layers, each network of which contains 
only one pair of inputs. The complexity of the network (i.e. 
its number of layers) is not specified a priori but evolves 
during successive training and selection cycles, increasing 
its complexity with each training/selection cycle until no 
further improvement is obtained at which point the learning/ 
selection cycle is terminated.  
 This paper presents some results on the design of an in-
ductive predictor of the principal variables of the pre-
precipitation stage of a wastewater treatment plant using 
self-organizing networks with a view to its predictive con-
trol.  

II. THE WASTEWATER PRE-PRECIPITATION PROCESS 
 A schematic diagram of the various stages of a typical 
WWTP is shown in Figure 1. Here wastewater inflow is 
first passed through a coarse screen and a sand trap before 
entering a pre-aeration basin where a solution of ferrous 
sulphate (FeSO4) is added. In the presence of oxygen the 
Fe(II)-ions are oxidized to Fe(III)-ions which form a non-
soluble precipitate with the phosphate (PO4

3-) in the water, 
while simultaneously some iron hydroxide also precipitates 
to form sludge. Addition of FeSO4 is made proportional to 
the flow rate of the incoming water. After pre-aeration, wa-
ter enters a block of parallel primary sedimentation basins 
where the sludge is separated through sedimentation.  
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 Samples of the key variables at the inputs and outputs of 
the pre-precipitation stage that precedes the Activated 
Sludge Process were taken at regular intervals over a three 
day period. Precipitation and flocculation in the pre-
precipitation stage is directly affected by the pH of the wa-
ter inflow. The Chemical Oxygen Demand or COD (COD, 
g/m3) defines the organic contents of the water and is a 
measure of the fraction of the pollutant contents of the wa-
ter that can be oxidized by an agent.  When reaching the re-
cipient, the organic material will consume oxygen when de-
graded, causing oxygen depletion. Phosphorus (P-tot, g/m3) 
appears in different forms in wastewater. Phosphorus bound 
in organic compounds is referred to as organic phosphorus 
while inorganic phosphorus, also called soluble phosphorus, 
consists of polyphosphate and orthophosphate. P-tot com-
prises the total phosphorus in the water. Discharge of phos-
phorus can cause eutrophication of the recipient.  
 

 
 
 
  Coarse Grid and Sand Trap                 Pre-precipitation Stage           
 
 
Fig. 1. Schematic diagram of the overall WWTP 
 
 Conductivity (Cond, µS/cm) is a measure of the ionic 
contents of the water and indirectly the composition of the 
water. This is true also for ammonium which constitutes a 
major part of the total amount of nitrogen in the wastewater. 
Suspended Solids (SS, g/m3) is a measure of the suspended 
solids in the water and is defined as the amount of particles 
larger than 0.45 μm in the water. A major part of the SS is 
organic material, and can except for turbidity, cause oxygen 
depletion. Samples were taken 5 times an hour from the wa-
ter inflow and outflow after the pre-sedimentation stage. 
The samples were pooled to represent the water for the cur-
rent hour (i.e. 5 samples per pool). To filter the samples for 
CODf, P-totf and SSf a glass fiber filter was used.  
 The pre-precipitation stage in a WWTP is a dynamic 
process whose inputs and outputs are time-varying. The 
outputs are invariably corrupted by random variations and 
instrument noise, a fact that makes accurate prediction for 
subsequent control difficult at best.  Dynamic systems 
whose components and structure are known are most often 
represented by differential or difference equations where 
the rate of change of each state is a function of the state and 
the forcing function. Real world processes are mostly 

nonlinear and time-varying, compounding the problem of 
establishing a sufficiently simple microscopic model which 
can be used for simulation, prediction and control. In some 
cases such models can be derived from first principles [1] 
but this is a laborious and time-consuming procedure that 
invariably is followed by exhaustive field tests to verify and 
validate the model under different operating conditions.  
 In this paper we focus attention on prediction of the out-
put of the pre-precipitation stage of a WWTP using self-
organizing network techniques [10-14] with a view to using 
the predicted variables for model predictive control of the 
stage. Since our objective here is to derive a macroscopic 
(i.e. input-output or black-box) model of the pre-treatment 
process, self-organizing networks were examined at length 
for. 
 
 
 

 

  

 
Unlike classical feed-forward deductive neural networks, 
whose structure is pre-defined [3,4], self-organizing net-
works have a layered structure that evolves during the train-
ing/selection process [12,14]. Starting with a simple struc-
ture, learning is followed by selection in which only those 
branches of the network that contribute significantly in pre-
dicting the output are retained, while those that do are ap-
propriately pruned. Network evolution requires successive 
addition of new layers of neurons and leads to increasing 
complexity and thereby increasing fidelity. The evolution-
ary procedure terminates when the error norm no longer de-
creases.  

III. THE SELF-ORGANIZING PNN PREDICTOR 
 Self-organizing predictors belong to the class of multi-
layered polynomial networks (PNNs) that have proved very 
effective in practice in both modeling and prediction. Two 
salient features of this class of networks differentiate them 
from conventional deductive neural networks: 

• Their structure evolves during training instead of be-
ing predefined. Thus there is no need for initial 
guessing about the size of the network. 

• By their very nature self-organizing networks cannot 
be over-trained. 

             Inputs                                                        Outputs 

Activated Sludge Process           Settler 



 
 

 

 To achieve the latter property, the data set is divided into 
three subsets: the Training Set, the Selection Set and the 
Evaluation Set. The nodes of a self-organizing polynomial 
network are N-Adalines, i.e. Adalines with a nonlinear pre-
processor. Six parameters (weights) are needed to define 
such a function. The main steps required in training this 
class of networks are: 

• Define the signals which will be considered as in-
puts to the network. When used for prediction, past 
values of the output could be used only, while for a 
modeling application signals that have a causal re-
lation with the output should be considered as in-
puts to the network.  

• A self-organizing multi-input network can generate 
only one output signal. For the multi-output case 
the number of networks that must be trained is 
equal to the number of outputs. These networks 
need not have the same structure and therefore re-
quire individual training.  

• Preprocessing data affects network training signifi-
cantly. Instead of using raw data its is often advan-
tages The following normalization is commonly 
used: 

m mx
σ
−

=  

  where m is the measured variable, m  is its mean  
  value and σ is its standard deviation over a finite  
  data set. 
• In a real application noise in the measurements has 

to be taken into account as well. In modeling tasks, 
noise can be helpful (a well known result from sys-
tem identification theory) but for prediction in con-
trast, pre-processing (data smoothing) is essential 
since random noise in the data leads to misleading 
results and increased computation. 

• From the moment the input signals are specified it is 
necessary to specify the time span in the past to 
use. In the self-organizing technique this decision 
is not critical in principle, since unnecessary nodes 
are pruned in any case. To be more specific, given 
a time Nx ∈\  it is desired to predict one step 
ahead using d past samples, define a signal matrix 
whose first column is [ ]1 2 1... T

dx x x + and last row is 

[ ]1 2 ...d d Nx x x+ + . All other columns are delayed 
versions of the first. This structure can be ex-
pressed by the Hankel matrix: 

 
1 2

2 3

1 2

...

...

N d

d d N

x x x
x x

H

x x x

−

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

# # #
 

 

It is clear that the last row constitutes the desired 
output array and all other rows are the elements of 
the predicted array. 

• The first layer of the node consisting of PNNs can 
now be created. One technique for generating these 
is to use combinations of data values in the form of 
ordered pairs in a computationally efficient man-
ner. The method used here finds the indices of the 
non-zero entries of an upper triangular matrix of 
appropriate dimensions. 

• Each node generates the desired output and is 
trained using the Widrow-Hoff learning rule [2-4]. 
Training is terminated either when some error cri-
terion (e.g. mean square error of the Training Set) 
is obtained or when the maximum number of ep-
ochs is reached.  

• Having computed the trained layer, selection of the 
best neurons follows. The MSE of the Selection 
Set is subsequently computed for each neuron and 
those neurons yielding comparatively large error 
are discarded.  

• The outputs of the post-selection neurons (i.e. survi-
vors) constitute the inputs of the next layer. Addi-
tion of further layers is not called for when either 
the minimum MSE increases or when a predefined 
maximum number of layers has been reached. 

• The performance of the network is ascertained using 
the Evaluation Set. It sis noted that the Selection 
Set contains new data since it has not hitherto been 
used for training. 

 
 The generalized transfer relationship between the inputs 
and the output of a MISO self-organizing network can be 
approximated by an infinite Volterra-Kolmogorov-Gabor 
(VKG) polynomial, the analog of a continuous Volterra se-
ries:  

0
1 1 1

n n n

i i ij i j
i i j

y a a x a x x ...
= = =

= + + +∑ ∑∑  

where n is the number of inputs. This polynomial can ap-
proximate any stationary random sequence of measure-
ments. Ivakhnenko showed that the VKG series could be 
expressed as a cascade of low order polynomials using only 
pairs of inputs and employing an iterative perceptron - like 
procedure to approximate the VKG polynomial to any de-
gree of accuracy by interconnecting an increasing number 
of low order polynomials. As the procedure proceeds, fur-
thermore, it is found that many node connections do not 
contribute significantly to the final result and can safely be 
pruned to permit only the essential relationships to evolve. 
 To simplify the procedure, consider here the case of a 
single polynomial network that involves only a single pair 
of inputs i jy y( , ) to generate an output equal to the inner 
product y W Y,=< > , where  
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is the output array while the weight vector is given by 
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 During each phase of evolution, the weights of the net-
works in each layer are determined and those branches that 
lead to high mean squared errors are pruned, the ‘best’ 
branches that yield minimum MSE being retained. Interest-
ingly, the computational effort and speed of learning of this 
class of networks is much less than that required to train a 
corresponding conventional feed-forward ANN due of the 
polynomial nature of the optimization problem. 
 Using only two variables as inputs per neuron requires 
computation of 6 weights per neuron in every layer. Train-
ing such a network consists of configuring the network by 
starting from the input layer which involves a total of 
n n3 ( 1)− weights, where n  is the number of input vari-

ables. It is clear that the number of neurons in each layer in-
creases roughly as the square of the number of inputs. A fi-
nite training set, which is sufficiently long to represent the 
underlying physical process, but not too long as to lead to 
over-training, is used in the training/selection procedure. 
The length of this time series is a result of experimentation 
and is heuristic. The optimum weights for each neuron at 
each layer are then computed using any training algorithm. 
The delta rule of Widrow and Hoff is commonly used be-
cause of its simplicity. The speed of convergence can be in-
creased significantly using more sophisticated methods. The 
training algorithm is given by the recursion: 
 

1 2 ( )k d T
k k k k k

k

XW W y W X
X

μ+ = + −  

  
where kW  is the neuron weight vector and kX  is the total 
neuron input vector at timek K1,2,...= . The desired output 
is given by d

ky and  μ ≈ 0.001 is the learning rate. When the 
error norm of the output of the training set reaches a mini-
mum then the weights of the neuron in that layer are held 
constant and training for that layer is terminated.  
 Following learning, a new data set, often shorter than the 
training set and termed the selection set, is fed to the net-
work and the error norm for each neuron is recomputed. 
Those neurons that yield inordinately large errors are sub-
sequently pruned as they are deemed to contribute to the 
end result insignificantly. This is an essential difference be-
tween self-organizing and conventional deductive neural 
networks. Network complexity is then increased by two de-
grees by adding a second layer and the procedure of train-
ing and selection is repeated once more. This procedure 
continues as many times as the overall error norm no longer 
decreases or when only one neuron remains in the current 

layer. At this point the evolutionary procedure is termi-
nated.  

For the case of one step ahead prediction only the current 
value the output and its most recent past values need only 
be used. The time span into the past required to predict the 
next value could also be determined inductively using this 
class of networks. In the case study, samples of measurements were taken 
from the outflow of the pre-precipitation stage every hour 
over a 3 day measurement campaign. The physical meas-
urements are shown as continuous lines while the values 
predicted by the self-organizing network are shown as 
dashed lines. It is seen that even with two or three layer 
networks and two previous data values, fidelity is quite ac-
ceptable. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Self-organizing network for one step ahead prediction of 
 Cond. 

 
Examples of the inductive networks that evolved during 

training are shown in Figs. 3 and 4. The first shows a simple 
two layer predictor of the variable Cond. It is seen that the 
last measurement ky and only the previous values ky 1− and 

ky 3− are required to predict the next output. Interestingly, 
the data value two time samples in the past ky 2−  does not 
enter the expression for the predicted output. 
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Fig. 2. Comparison of examples of predicted (dashed lines) and 

measured values (continuous lines) of the principal output 
variables of the pre-treatment stage of the WWTP. 

 
Despite the apparent simplicity of the two layer network, 

the functional relationship between the predicted value 
ky 1+ and the current and past values is quite complex. Here, 

for instance: 
 

yk+1 = -0.00757-0.09308yk-3-0.03263yk-3
3  

 +0.05634yk-3yk+0.02711yk
2+1.434yk  

 +0.01229(-0.00685-0.2009yk-3-0.07043yk-3
2 

 +0.1216yk-3yk+0.03819yk
2 

 +1.124yk)2+0.00327(-0.00685 
 -0.2009yk-3-0.07043yk-3

2+0.1216yk-3yk 
 +0.03819yk

2+1.124yk)(-0.02712 
 -0.7772yk-1-0.09284yk-1

2+0.1605yk-1yk 
 +0.01809yk

2+1.754yk)-0.01840(-0.02712 
 -0.7772yk-1-0.09284yk-1

2+0.1605yk-1yk 
 +0.01809yk

2+1.754yk)2-0.4047yk-1 
 -0.04834yk-1

2+0.08357yk-1yk 
 
 The network for predicting the CODf is shown in Figure 
4 and is considerably more complex than the first case re-
quiring three layers before acceptable fidelity is achieved. It 



 
 

 

is interesting to note that only a very small fraction of the 
possible branch combinations are used here. The relation-
ship between the current and past inputs and the predicted 
value is far too complex to present and its inclusion here 
would serve little purpose. 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Self-organizing network for one step ahead prediction of 
 CODf. 

IV. CONCLUSIONS 
Prediction using time-series analysis of complex physical 

processes is a resort that is taken when all other methods of 
simulation have failed. The approach followed in this paper, 
that of inductive learning using self-organizing networks 
has proved useful in prediction in a variety of fields. In this 
paper it has been used to predict the outputs of the pre-
precipitation process in a wastewater treatment plant a proc-
ess that has proved too difficult to model using first princi-
ples. Following an extensive study, deductive self-
organizing networks were found to yield improved results 
over conventional adaptive neural networks. 
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